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ON HALF-FACTORIALITY OF TRANSFER KRULL MONOIDS

WEIDONG GAO, CHAO LIU, SALVATORE TRINGALI, AND QINGHAI ZHONG

Abstract. Let H be a transfer Krull monoid over a subset G0 of an abelian group G
with finite exponent. Then every non-unit a ∈ H can be written as a finite product of
atoms, say a = u1 · . . . · uk. The set L(a) of all possible factorization lengths k is called
the set of lengths of a, and H is said to be half-factorial if |L(a)| = 1 for all a ∈ H .

We show that, if a ∈ H and |L(a⌊(3 exp(G)−3)/2⌋)| = 1, then the smallest divisor-closed
submonoid of H containing a is half-factorial. In addition, we prove that, if G0 is finite
and

∣

∣L
(
∏

g∈G0
g2 ord(g)

)
∣

∣ = 1, then H is half-factorial.

1. Introduction

Let H be a monoid. If an element a ∈ H has a factorization a = u1 · . . . · uk, where
k ∈ N and u1, . . . , uk are atoms of H , then k is called a factorization length of a, and
the set L(a) of all possible k is referred to as the set of lengths of a. The monoid H is
said to be half-factorial (half-factorial) if |L(a)| = 1 for every a ∈ H . Half-factoriality
has been a central topic in factorization theory since the early days of this field (e.g., see
[3, 4, 15, 19, 5, 11, 16]).

Given a ∈ H , let JaK = {b ∈ H | b divides some power of a} be the smallest divisor-
closed submonoid of H containing a. Then JaK is half-factorial if and only if |L(an)| = 1
for all n ∈ N, and H is half-factorial if and only if JcK is half-factorial for every c ∈ H . It
is thus natural to ask:

Does there exist an integer N ∈ N such that, if a ∈ H and |L(aN)| = 1, then
JaK is half-factorial ? (Note that, if JaK is half-factorial for some a ∈ H , then
of course |L(ak)| = 1 for every k ∈ N.)

We answer this question affirmatively for transfer Krull monoids over finite abelian groups,
and we study the smallest N having the above property (Theorems 1.1 and 1.2).

Transfer Krull monoids and transfer Krull domains are a recently introduced class of
monoids and domains including, among others, all commutative Krull domains and wide
classes of non-commutative Dedekind domains (see Section 2 and [8] for a survey).

Let H be a transfer Krull monoid over a subset G0 of an abelian group G. Then H is
half-factorial if and only if the monoid B(G0) of zero-sum sequences over G0 is half-factorial
(in this case, we also say that the set G0 is half-factorial). It is a standing conjecture that
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every abelian group has a half-factorial generating set, which implies that every abelian
group can be realized as the class group of a half-factorial Dedekind domain ([9]).

Suppose now that H is a commutative Krull monoid with class group G and that every
class contains a prime divisor. It is a classic result that H is half-factorial if and only if
|G| ≤ 2, and it turns out that, also for |G| ≥ 3, half-factorial subsets (and minimal non-
half-factorial subsets) of the class group G play a crucial role in a variety of arithmetical
questions (see [10, Chapter 6.7], [14]). However, we are far away from a good understanding
of half-factorial sets in finite abelian groups (see [21] for a survey, and [17, 18, 22]). To
mention one open question, the maximal size of half-factorial subsets is unknown even for
finite cyclic groups ([18]). Our results open the door to a computational approach to the
study of half-factorial sets.

More in detail, denote by hf(H) the infimum of all N ∈ N with the following property:

If a ∈ H and |L(aN)| = 1, then JaK is half-factorial.

(Here, as usual, we assume inf ∅ = ∞.) We call hf(H) the half-factoriality index of H .
If H is not half-factorial, then hf(H) is the infimum of all N ∈ N with the property that
|L(aN)| ≥ 2 for every a ∈ H such that JaK is not half-factorial.

Theorem 1.1. Let H be a transfer Krull monoid over a finite subset G0 of an abelian

group G with finite exponent. The following are equivalent:

(a) H is half-factorial.

(b) hf(H) = 1.
(c) G0 is half-factorial.

(d)
∣

∣L
(
∏

g∈G0
g2 ord(g)

)
∣

∣ = 1.

We observe that in general if H is half-factorial, then hf(H) = 1. But if H is a transfer
Krull monoid over a subset of a torsion free group, then hf(H) = 1 does not imply that
H is half-factorial (see Example 2.4.1). Furthermore, for every n ∈ N, there exists a Krull
monoid H with finite class group such that hf(H) = n (see Example 2.4.2).

Theorem 1.2. Let H be a transfer Krull monoid over an abelian group G.

1. hf(H) < ∞ if and only if exp(G) < ∞.

2. If exp(G) < ∞ and |G| ≥ 3, then exp(G) ≤ hf(H) ≤ 3
2
(exp(G)− 1).

3. If G is cyclic or exp(G) ≤ 6, then hf(H) = exp(G).

We postpone the proofs of Theorems 1.1 and 1.2 to Section 3.

2. Preliminaries

Our notation and terminology are consistent with [10]. Let N be the set of positive
integers, let N0 = N∪ {0}, and let Q be the set of rational numbers. For integers a, b ∈ Z,
we denote by [a, b] = {x ∈ Z | a ≤ x ≤ b} the discrete, finite interval between a and b.

Atomic monoids. By a monoid, we mean an associative semigroup with identity, and
if not stated otherwise we use multiplicative notation. Let H be a monoid with identity
1 = 1H ∈ H . An element a ∈ H is said to be invertible (or a unit) if there exists an element
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a′ ∈ H such that aa′ = a′a = 1. The set of invertible elements of H will be denoted by H×,
and we say that H is reduced if H× = {1}. The monoid H is said to be unit-cancellative
if for any two elements a, u ∈ H , each of the equations au = a or ua = a implies that
u ∈ H×. Clearly, every cancellative monoid is unit-cancellative.

Suppose that H is unit-cancellative. An element u ∈ H is said to be irreducible (or an
atom) if u /∈ H× and for any two elements a, b ∈ H , u = ab implies that a ∈ H× or b ∈ H×.
Let A(H) denote the set of atoms of H . We say that H is atomic if every non-unit is a
finite product of atoms. If H satisfies the ascending chain condition on principal left ideals
and on principal right ideals, then H is atomic ([7, Theorem 2.6]). If a ∈ H \ H× and
a = u1 . . . uk, where k ∈ N and u1, . . . , uk ∈ A(H), then k is a factorization length of a,
and

LH(a) = L(a) = {k ∈ N | k is a factorization length of a}

denotes the set of lengths of a. It is convenient to set L(a) = {0} for all a ∈ H×.
A transfer Krull mononid is a monoid H having a weak transfer homomorphism (in

the sense of [2, Definition 2.1]) θ : H → B(G0), where B(G0) is the monoid of zero-sum
sequences over a subset G0 of an abelian group G. If H is a commutative Krull monoid
with class group G and G0 ⊂ G is the set of classes containing prime divisors, then there
is a weak transfer homomorphism θ : H → B(G0). Beyond that, there are wide classes of
non-commutative Dedekind domains having a weak transfer homomorphism to a monoid of
zero-sum sequences ([25, Theorem 1.1], [24, Theorem 4.4]). We refer to [8, 13] for surveys
on transfer Krull monoids. If θ : H → B(G0) is a weak transfer homomorphism, then sets of
lengths in H and in B(G0) coincide ([2, Lemma 2.7]) and thus the statements of Theorems
1.1 and 1.2 can be proved in the setting of monoids of zero-sum sequences.

Monoids of zero-sum sequences. Let G be an abelian group and let G0 ⊂ G be
a non-empty subset. Then 〈G0〉 denotes the subgroup generated by G0. In Additive
Combinatorics, a sequence (over G0) means a finite unordered sequence of terms from G0

where repetition is allowed, and (as usual) we consider sequences as elements of the free
abelian monoid with basis G0. Let

S = g1 · . . . · gℓ =
∏

g∈G0

gvg(S) ∈ F(G0)

be a sequence over G0. We call

supp(S) = {g ∈ G | vg(S) > 0} ⊂ G the support of S ,

|S| = ℓ =
∑

g∈G

vg(S) ∈ N0 the length of S ,

σ(S) =
ℓ

∑

i=1

gi the sum of S ,

and Σ(S) =
{

∑

i∈I

gi | ∅ 6= I ⊂ [1, ℓ]
}

the set of subsequence sums of S .

The sequence S is said to be
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• zero-sum free if 0 /∈ Σ(S),
• a zero-sum sequence if σ(S) = 0,
• a minimal zero-sum sequence if it is a nontrivial zero-sum sequence and every proper
subsequence is zero-sum free.

The set of zero-sum sequences B(G0) = {S ∈ F(G0) | σ(S) = 0} ⊂ F(G0) is a submonoid,
and the set of minimal zero-sum sequences is the set of atoms of B(G0). For any arithmetical
invariant ∗(H) defined for a monoid H , we write ∗(G0) instead of ∗(B(G0)). In particular,
A(G0) = A(B(G0)) is the set of atoms of B(G0) and hf(G0) = hf(B(G0)).

Let G be an abelian group. We denote by exp(G) the exponent of G which is the least
common multiple of the orders of all elements of G. Let r ∈ N and let (e1, . . . , er) be
an r-tuple of elements of G. Then (e1, . . . , er) is said to be independent if ei 6= 0 for all
i ∈ [1, r] and if for all (m1, . . . , mr) ∈ Zr an equation m1e1 + . . . +mrer = 0 implies that
miei = 0 for all i ∈ [1, r]. Suppose G is finite. The r-tuple (e1, . . . , er) is said to be a basis
of G if it is independent and G = 〈e1〉 ⊕ . . .⊕ 〈er〉. For every n ∈ N, we denote by Cn an
additive cyclic group of order n. Since G ∼= Cn1 ⊕ . . .⊕Cnr

, r = r(G) is the rank of G and
nr = exp(G) is the exponent of G.

Let G0 ⊂ G be a non-empty subset. For a sequence S = g1 · . . . · gℓ ∈ F(G0), we call

k(S) =
l

∑

i=1

1

ord(gi)
∈ Q≥0 the cross number of S, and

K(G0) = max{k(S) | S ∈ A(G0)} the cross number of G0.

For the relevance of cross numbers in the theory of non-unique factorizations, see [18, 20, 23]
and [10, Chapter 6].

The set G0 is called

• half-factorial if the monoid B(G0) is half-factorial;
• non-half-factorial if the monoid B(G0) is not half-factorial;
• minimal non-half-factorial if G0 is not half-factorial but all its proper subsets are;
• an LCN-set if k(A) ≥ 1 for all atoms A ∈ A(G0).

The following simple result ([10, Proposition 6.7.3]) will be used throughout the paper
without further mention.

Lemma 2.1. Let G be a finite abelian group and G0 ⊂ G a subset. Then the following

statements are equivalent :

(a) G0 is half-factorial.

(b) k(U) = 1 for every U ∈ A(G0).

(c) L(B) = {k(B)} for every B ∈ B(G0).

Lemma 2.2. Let G be a finite group, let G0 ⊂ G be a subset, let S be a zero-sum sequence

over G0, and let A be a minimal zero-sum sequence over G0.

1. If k(A) 6= 1, then |L(Aexp(G))| ≥ 2.
2. If there exists a zero-sum subsequence T of S such that |L(T )| ≥ 2, then |L(S)| ≥ 2.
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3. If k(A) < 1 and k(A) is minimal over all minimal zero-sum sequences over G0, then
∣

∣

∣

∣

L

(

A

⌈

ord(g)
vg(A)

⌉

)
∣

∣

∣

∣

≥ 2, for all g ∈ supp(A).

Proof. 1. Suppose k(A) 6= 1 and let A = g1 · . . . · gℓ, where ℓ ∈ N and g1, . . . , gℓ ∈ G0. Then

Aexp(G) = (g
ord(g1)
1 )

exp(G)
ord(g1) · . . . · (gord(gℓ)ℓ )

exp(G)
ord(gℓ) ,

which implies that
{

exp(G),

ℓ
∑

i=1

exp(G)

ord(gi)

}

= {exp(G), exp(G)k(A)} ⊂ L(Aexp(G)).

It follows by k(A) 6= 1 that |L(Aexp(G))| ≥ 2.

2. Suppose T is a zero-sum subsequence of S with |L(T )| ≥ 2. It follows by L(S) ⊃
L(T ) + L(ST−1) that |L(S)| ≥ |L(T )| ≥ 2.

3. Suppose k(A) < 1 and k(A) is minimal over all minimal zero-sum sequences over G0.
Let g ∈ supp(A). Then there exist s ∈ N and minimal zero-sum sequences W1, . . . ,Ws

such that

A
⌈
ord(g)
vg(A)

⌉
= gord(g) ·W1 · . . . ·Ws .

Since

k

(

A

⌈

ord(g)
vg(A)

⌉

)

=

⌈

ord(g)

vg(A)

⌉

k(A) = 1 +
s

∑

i=1

k(Wi) > (1 + s)k(A) ,

we have ⌈ord(g)
vg(A)

⌉ 6= s + 1 and hence

∣

∣

∣

∣

L

(

A

⌈

ord(g)
vg(A)

⌉

)
∣

∣

∣

∣

≥ 2. �

For commutative and finitely generated monoids, we have the following result.

Proposition 2.3. Let H be a commutative unit-cancellative monoid. If Hred is finitely

generated, then hf(H) is finite.

Proof. We may assume that H is reduced and not half-factorial. Suppose H is finitely
generated and suppose A(H) = {u1, . . . , un}, where n ∈ N. Set A0 = {

∏

i∈I ui | ∅ 6= I ⊂
[1, n]}. Then A0 is finite and hence there exists M ∈ N such that |L(aM0 )| ≥ 2 for all
a0 ∈ A0 with Ja0K not half-factorial. Let a ∈ H \ H× such that JaK is not half-factorial.
It suffices to show that |L(aM)| ≥ 2. Suppose a = uk1

1 · . . . · ukn
n , where k1, . . . , kn ∈ N0.

Set I0 = {i ∈ [1, n] | ki ≥ 1} and a0 =
∏

i∈I ui. Then a0 divides a and Ja0K = JaK is not
half-factorial, whence |L(aM0 )| ≥ 2 and |L(aM)| ≥ 2. �

If G0 is a finite subset of an abelian group, then B(G0) is finitely generated ([10, Theorem
3.4.2]) and thus hf(G0) < ∞. We refer to [6, Sections 3.2 and 3.3] and [12] for semigroups
of ideals and semigroups of modules that are finitely generated unit-cancellative but not
necessarily cancellative.

Examples 2.4. The following examples will help up to illustrate some important points.
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1. Let (e1, e2) be a basis of Z2 and let G0 = {e1,−e1, e2,−e2, e1 + e2,−e1 − e2}. Then
A(G0) = {e1(−e1), e2(−e2), (e1+ e2)(−e1− e2), e1e2(−e1− e2), (−e1)(−e2)(e1+ e2)}.
Since e1(−e1) ·e2(−e2) · (e1+e2)(−e1−e2) = e1e2(−e1−e2) · (−e1)(−e2)(e1+e2), we
obtain G0 is not half-factorial. Furthermore, we have G1 is half-factorial for every
nonempty proper subset G1 ( G0. Let A ∈ B(G0). If supp(A) = G0, then |L(A)| ≥ 2
and JAK = B(G0) is not half-factorial. If supp(A) ( G0, then JAK = B(supp(A)) is
half-factorial and |L(A)| = 1. Therefore hf(G0) = 1.

2. Let G be a cyclic group with order n and let g ∈ G with ord(g) = n, where n ∈ N≥3.
Set G0 = {g,−g}. Then G0 is not half-factorial. Let A0 = g(−g). Then JA0K is not
half-factorial and |L(An−1

0 )| = 1, whence hf(G0) ≥ n. Let A ∈ B(G0) with JAK is not
half-factorial. Then supp(A) = G0 and A0 divides A, whence |L(A

n)| ≥ 2. Therefore
hf(G0) = n. Let G ∼= C2

2 and let (e1, e2) be a basis of G. Set G1 = {e1, e2, e1 + e2}.
Then G1 is not half-factorial. Let A1 = e1e2(e1+ e2). Then JA1K is not half-factorial
and |L(A1)| = 1, whence hf(G1) ≥ 2. Let A ∈ B(G1) with JAK is not half-factorial.
Then supp(A) = G1 and A1 divides A, whence |L(A2)| ≥ 2. Therefore hf(G1) = 2.

3. Let H be a bifurcus moniod (i.e. 2 ∈ L(a) for all a ∈ H \ (H× ∪ A(H))). For
examples, see [1, Examples 2.1 and 2.2]. Since for every a ∈ H \ H×, we have
{2, 3} ⊂ L(a3), it follows that hf(H) ≤ 3 and hf(H) is the minimal integer t ∈ N
such that |L(at)| ≥ 2 for all a ∈ H \H×. Therefore hf(H) = 3 if and only if there
exists a0 ∈ A(H) such that L(a20) = {2}.

4. Let H ⊂ F = F× × [p1, . . . , ps] be a non-half factorial finitely primary monoid of
rank s and exponent α (see [10, Definition 2.9.1]). For every a = ǫpt11 . . . ptss ∈ F ,
we define ||a|| = t1 + . . . + ts, where t1, . . . , ts ∈ N0 and ǫ ∈ F×. Let a ∈ H \ H×.
Since H is primary, we have H = JaK is not half-factorial. Thus hf(H) is the
minimal integer t ∈ N such that |L(at)| ≥ 2 for all a ∈ H \ H×. Suppose a0 ∈ H
with ||a0|| = min{||a|| : a ∈ H \ H×}. Then a0 ∈ A(H) and L(a20) = {2}, whence
hf(H) ≥ 3.

If H \ H× = (p1 . . . ps)
αF and s ≥ 2, then H is bifurcus and hence hf(H) = 3.

Suppose s = 1 and H \ H× = (p1)
αF . Let b = ǫpβ ∈ H . Then p3α divides b4. It

follows by p3α = (pα)3 = pα+1p2α−1 that |L(b4)| ≥ 2, whence hf(H) ≤ 4. If 3β ≥ 4α,
then p3α divides b3 and hence |L(b3)| ≥ 2. If 3β ≤ 4α − 2, then b is an atom and
b3 = ǫ3p2α−1p3β−(2α−1), whence |L(b3)| ≥ 2. If 3β = 4α − 1, then L(b3) = {3}. Put
all together, if α ≡ 1 mod 3, then hf(H) = 4. Otherwise hf(H) = 3.

3. Proof of main theorem

Proposition 3.1. Let G0 ⊂ G be a non half-factorial subset and let S be a zero-sum

sequence over G0 with supp(S) = G0.

1. If G0 is an LCN-set, then |L(
∏

g∈G0
gord(g))| ≥ 2.

2. If |G0| = 2, then |L(
∏

g∈G0
gord(g))| ≥ 2.

3. If G0 is a minimal non half-factorial subset, then |L(Sexp(G))| ≥ 2.
4. If |{g ∈ G0 | ord(g)/vg(S) = exp(G)}| ≤ 1, then |L(Sexp(G))| ≥ 2.
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Proof. 1. Suppose G0 is an LCN-set. Since G0 is not half-factorial, there exists a minimal
zero-sum sequence T over G0 such that k(T ) > 1. Note that T is a subsequence of
∏

g∈G0
gord(g). Then there exits W1, . . . ,Wl ∈ A(G0) such that

∏

g∈G0

gord(g) = T ·W1 · . . . ·Wl .

Thus k(
∏

g∈G0
gord(g)) = |G0| = k(T ) +

∑l

i=1 k(Wi) > 1 + l. The assertion follows by

{|G0|, 1 + l} ⊂ L(
∏

g∈G0
gord(g)).

2. Suppose |G0| = 2 and let G0 = {g1, g2}. If G0 is an LCN-set, the assertion follows
by 1.. Suppose there exists a minimal zero-sum sequence T over G0 with k(T ) < 1. Let
T0 = gl11 · gl22 be the minimal zero-sum sequence over G0 such that k(T0) is minimal. If

min{ord(g1)
l1

, ord(g2)
l2

} ≤ 2, say ord(g1)
l1

≤ 2 then

T 2
0 = g

ord(g1)
1 ·W, where W is non-empty zero-sum sequence .

Thus k(W ) = 2k(T0) − 1 < k(T0), a contradiction to the minimality of k(T0). Therefore

min{ord(g1)
l1

, ord(g2)
l2

} > 2 and hence

g
ord(g1)
1 · g

ord(g2)
2 = T 2

0 · V where V is non-empty zero-sum sequence .

It follows that |L(g
ord(g1)
1 · g

ord(g2)
2 )| ≥ 2.

3. Suppose that G0 is a minimal non-half-factorial set. If S has a minimal zero-sum
subsequence A with k(A) 6= 1, then the assertion follows by Lemma 2.2. If G0 is an
LCN-set, then the assertion follows from 1. and Lemma 2.2.2. Therefore we can suppose
L(S) = {k(S)} and suppose there exists a minimal zero-sum sequence T over G0 with
k(T ) < 1.

Let T0 =
∏|G0|

i=1 g
li
i be the minimal zero-sum sequence over G0 such that k(T0) is minimal.

The minimality of G0 implies that li ≥ 1 for all i ∈ [1, |G0|]. After renumbering if necessary,
we let

ord(g1)

l1
= min{

ord(gi)

li
| i ∈ [1, |G0|]} .

By Lemma 2.2.3,

∣

∣

∣

∣

L

(

T

⌈

ord(g1)
l1

⌉

0

)
∣

∣

∣

∣

≥ 2. If T

⌈

ord(g1)
l1

⌉

0 divides Sexp(G), the assertion follows by

Lemma 2.2.2. Suppose T

⌈

ord(g1)
l1

⌉

0 ∤ Sexp(G). Let

I = {i ∈ [1, |G0|] |

⌈

ord(g1)

l1

⌉

li > exp(G)vgi(S)} .

Thus for each i ∈ I, we have

2 ord(gi) > li

⌈

ord(gi)

li

⌉

≥ li

⌈

ord(g1)

l1

⌉

> exp(G)vgi(S) ≥ exp(G) ,

which implies that ord(gi) = exp(G), vgi(S) = 1, and
⌈

ord(g1)
l1

⌉

> ord(gi)
li

= exp(G)
li

.
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Let i0 ∈ I such that li0 = max{li | i ∈ I}. Therefore for every j ∈ [1, |G0|] \ I, we have

lj ≤
exp(G)vgj(S)

⌈

ord(g1)
l1

⌉ ≤
exp(G)vgj(S)

exp(G)
li0

= li0vgj(S) .

Note that for every i ∈ I, we have li ≤ li0 = li0vgi(S). It follows by vgi0 (T0) = li0 =

li0vgi0 (S) = vgi0 (S
li0 ) that

Sli0 = T0 ·W, where W is a zero-sum sequence over G0 \ {gi0} .

By the minimality of G0, we have G0 \ {gi0} is half-factorial which implies that k(W ) ∈ N.
Therefore k(T0) = li0k(S)− k(W ) is an integer, a contradiction to k(T0) < 1.

4. Let G1 = {g ∈ G0 | ord(g) = exp(G)vg(S)}. Suppose G0 \ G1 is not half-factorial. If
G0 \ G1 is an LCN-set, then the assertion follows by Proposition 3.1.1 and Lemma 2.2.2.
Otherwise there exits a minimal zero-sum sequence A over G0 \ G1 such that k(A) < 1.
We may assume that k(A) is minimal over all minimal zero-sum sequences over G0 \ G1

and that min{ord(g)
vg(A)

| g ∈ supp(A)} = ord(g0)
vg0(A)

for some g0 ∈ supp(A) ⊂ G0 \ G1. Thus by

Lemma 2.2.3, we have |L

(

A

⌈

ord(g0)
vg0 (A)

⌉
)

| ≥ 2. The definition of G1 implies that

A

⌈

ord(g0)
vg0 (A)

⌉

divides Sexp(G)

and hence the assertion follows.
Suppose G0 \G1 is half-factorial. Then G1 is non-empty and hence G1 = {g0} for some

g0 ∈ G0. If G0 is an LCN-set, then the assertion follows by Proposition 3.1.1 and Lemma
2.2.2. Otherwise there exits a minimal zero-sum sequence A over G0 such that k(A) < 1.
We may assume that k(A) is minimal over all minimal zero-sum sequences over G0 and

that min{ord(g)
vg(A)

| g ∈ supp(A)} = ord(g1)
vg1(A)

for some g1 ∈ supp(A) ⊂ G0. Thus by Lemma

2.2.3, we have |L

(

A

⌈

ord(g1)
vg1 (A)

⌉
)

| ≥ 2. For every g ∈ G0 \G1, we obtain

vg(A)

⌈

ord(g1)

vg1(A)

⌉

≤ vg(A)

⌈

ord(g)

vg(A)

⌉

< 2 ord(g) ≤ exp(G)vg(S) .

If vg0(A)
⌈

ord(g1)
vg1(A)

⌉

≤ ord(g0) = exp(G), then

A

⌈

ord(g1)
vg1 (A)

⌉

divides Sexp(G)

and hence |L(Sexp(G))| ≥ 2.
Otherwise for every g ∈ G \G1, we have

exp(G)

vg0(A)
<

⌈

ord(g1)

vg1(A)

⌉

≤

⌈

ord(g)

vg(A)

⌉

≤

⌈

exp(G)vg(S)

2vg(A)

⌉

≤
exp(G)vg(S)

vg(A)
.

Therefore vg(A) < vg0(A)vg(S) for all g ∈ G0 \ G1 which implies that A divides Svg0(A).
Thus there exits a zero-sum sequence W over G0 \ G1 such that Svg0(A) = A · W . Since
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G0 \G1 is half-factorial, we obtain k(A) = vg0(A)k(S)−k(W ) is an integer, a contradiction
to k(A) < 1. �

Proof of Theorem 1.1. By the definition of transfer Krull monoid, it suffices to prove the
assertions for H = B(G0) and hence H is half-factorial if and only if G0 is half-factorial. If
G0 is half-factorial, it is easy to see that hf(G0) = 1 and

∣

∣L
(
∏

g∈G0
g2 ord(g)

)
∣

∣ = 1. Therefore

we only need to show that (b) implies (c) and that (d) implies (c).
(b) ⇒ (c) Suppose hf(G0) = 1 and assume to the contrary that G0 is not half-factorial.

Then there exists A ∈ A(G0) such that k(A) 6= 1, whence supp(A) is not half-factorial.
Therefore hf(supp(A)) ≥ 2, a contradiction.

(d) ⇒ (c) Suppose |L(
∏

g∈G0
g2 ord(g))| = 1 and assume to the contrary that G0 is not half-

factorial. If G0 is an LCN set, then Proposition 3.1.1 implies that |L(
∏

g∈G0
gord(g))| ≥ 2, a

contradiction. Thus there exists an atom A ∈ A(G0) with k(A) < 1 and we may assume
that k(A) is minimal over all atoms of B(G0). Let g0 ∈ supp(A). Then by Lemma 2.2.3,

we have

∣

∣

∣

∣

L

(

A

⌈

ord(g0)
vg0 (A)

⌉
)
∣

∣

∣

∣

≥ 2, a contradiction to A

⌈

ord(g0)
vg0 (A)

⌉

|
∏

g∈G0
g2 ord(g). �

Proof of Theorem 1.2. By the definition of transfer Krull monoid, it sufficient to prove all
assertions for H = B(G).

1. Suppose exp(G) < ∞. If |G| ≥ 3, then 2. implies that hf(G) < ∞. If |G| ≤ 2, then
B(G) is half-factorial and hence hf(G) = 1.

Suppose exp(G) = ∞. If there exists an element g ∈ G with ord(g) = ∞, then An =
((n + 1)g)(−ng)(−g) is an atom for every n ∈ N. Since {(n + 1)g,−ng,−g} is not half-
factorial and |L(An

n)| = 1 for every n ≥ 2, we obtain that hf(G) ≥ n for every n ≥ 2, that
is, hf(G) = ∞. Otherwise G is torsion. Then there exists a sequence (gi)

∞
i=1 with gi ∈ G

and limi→∞ ord(gi) = ∞. It follows by 1. that hf(G) ≥ hf(〈gi〉) ≥ ord(gi) for all i ∈ N,
that is, hf(G) = ∞.

2. IfG is an elementary 2-group and e1, e2 are two independent elements, then {e1, e2, e1+
e2} is not a half-factorial set and |L(e1e2(e1 + e2))| = 1 which implies that hf(G) ≥ 2 =
exp(G). Otherwise there exists an element g ∈ G with ord(g) = exp(G) ≥ 3. Since {g,−g}
is not half-factorial and |L(gord(g)−1(−g)ord(g)−1)| = 1, we obtain hf(G) ≥ ord(g) = exp(G).

Let S be a zero-sum sequence over G such that supp(S) is not half-factorial. In order to

prove hf(G) ≤
⌊

3 exp(G)−3
2

⌋

, we show that

|L(S⌊
3 exp(G)−3

2 ⌋)| ≥ 2 .

Set G0 = supp(S). If G0 is an LCN-set, the assertion follows by Proposition 3.1.1. Suppose
there exists an atom A ∈ A(G0) with k(A) < 1. Let A0 ∈ A(supp(S)) be such that k(A0)

is minimal over all minimal zero-sum sequences over G0 and set A0 = gl11 · . . . · g
ly
y , where

y, l1, . . . ly ∈ N and g1, . . . , gy ∈ supp(S) are pairwise distinct elements. If there exists

j ∈ [1, y] such that 2lj ≥ ord(gj), then g
ord(gi)
j divides A2

0 and hence A2
0 = g

ord(gj)
j · W
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for some non-empty sequence W ∈ B(supp(S)). Thus k(W ) = 2k(A0) − 1 < k(A0), a
contradiction to the minimality of k(A0). Therefore

2li ≤ ord(gi)− 1 for all i ∈ [1, y] .

After renumbering if necessary, we assume ord(g1)
l1

= min{ord(gi)
li

| i ∈ [1, y]}. Then

li

⌈

ord(g1)

l1

⌉

≤ li

⌈

ord(gi)

li

⌉

≤ li
ord(gi) + li − 1

li
≤ ord(gi)+

ord(gi)− 1

2
−1 ≤

3 exp(G)− 3

2
,

which implies A

⌈

ord(g1)
l1

⌉

0 divides S⌊
3 exp(G)−3

2 ⌋. The assertion follows by Lemma 2.2.3.

3(a). Suppose that G is cyclic and that g ∈ G with ord(g) = |G| ≥ 3. We will show that
hf(G) = exp(G).

Let S be a zero-sum sequence over G such that supp(G) is not half-factorial. It suffices
to show |L(Sexp(G))| ≥ 2. If |{g ∈ supp(S) | ord(g) = |G|vg(S)}| ≤ 1, then the assertion
follows from Proposition 3.1.4. Suppose |{g ∈ supp(S) | ord(g) = |G|vg(S)}| ≥ 2. Then
there exist distinct g1, g2 ∈ supp(S) such that ord(g1) = ord(g2) = |G|. We may assume

that g1 = kg2 for some k ∈ N≥2 with gcd(k, |G|) = 1. It follows by k(g
|G|−k
1 · g2) < 1

that G0 = {g1, g2} = {g1, kg1} is not half-factorial. By Proposition 3.1.2, we obtain that
|L(Sexp(G))| ≥ 2.

3(b). Suppose G is a finite abelian group with exp(G) ≤ 6. We need to prove that
hf(G) = exp(G). Let S be a zero-sum sequence over G such that supp(G) is not half-
factorial. It suffices to show |L(Sexp(G))| ≥ 2.

If supp(S) is an LCN-set, the assertion follows by Proposition 3.1.1. Thus there is a
minimal zero-sum sequence W over supp(S) such that

k(W ) < 1 .

By Proposition 3.1.2 and Lemma 2.2.2, we have

|supp(W )| ≥ 3.

Suppose W |S. Since k(W ) < 1, it follows by Lemma 2.2 that |L(W exp(G))| ≥ 2 and hence
|L(Sexp(G))| ≥ 2. Therefore we may assume that W ∤ S, whence |W | ≥ | supp(W )|+1 ≥ 4.

It follows that 6 ≥ exp(G) ≥ |W |
k(W )

> |W | ≥ 4.

We distinguish two cases according to exp(G) ∈ {5, 6}.
Case 1. exp(G) = 5.
Then, G ∼= Cr

5 and for all W ∈ A(supp(S)) with k(W ) < 1, we have that

W ∤ S, | supp(W )| = 3, and |W | = 4 .

Let W0 be an atom over supp(S) with k(W0) < 1. Then W0 and S must be of the forms

W0 = g21g2g3, S = Tg1g2g3

where g1, g2, g3 ∈ supp(S) are pairwise distinct and T ∈ F(supp(S)\{g1}) with σ(T ) = g1.
We may assume T is zero-sum free. Otherwise T = T0T

′ with T0 is zero-sum and T ′

is zero-sum free and we can replace S by T ′g1g2g3, since |L((T ′g1g2g3)
5)| ≥ 2 implies that



ON HALF-FACTORIALITY OF TRANSFER KRULL MONOIDS 11

|L(S5)| ≥ 2. Therefore S is a product of at most three atoms and every term of S has
order 5.

Assume to the contrary that |L(S5)| = 1, i.e., L(S5) = {|T | + 3}. Since g51g
5
2g

5
3 =

W 2
0 (g1g

3
2g

3
3) is a zero-sum subsequence of S5, we obtain that g1g

3
2g

3
3 is an atom. Note that

(g21g2g3)
2S = (g41T )(g1g

3
2g

3
3) is a zero-sum subsequence of S5 .

Suppose S is an atom. Then L(g41T ) = {2} and hence |g41T | ≥ 2× 4 = 8, i.e., |T | ≥ 4. It
follows by {5} = L(S5) = {|T |+ 3} that |T | = 2, a contradiction.

Suppose S is a product of two atoms. Then L(g41T ) = {3} and hence |g41T | ≥ 3×4 = 12,
i.e., |T | ≥ 8. It follows by {10} = L(S5) = {|T |+ 3} that |T | = 7, a contradiction.

Suppose S is a product of three atoms. Then L(g41T ) = {4} which implies that T =
T1T2T3T4 such that g1Ti is zero-sum for all i ∈ [1, 4]. Since g1Ti |S, we obtain k(g1Ti) ≥ 1
and hence |g1Ti| ≥ 5. Therefore |g41T | ≥ 4 × 5 = 20, i.e., |T | ≥ 16. It follows by
{15} = L(S5) = {|T |+ 3} that |T | = 12, a contradiction.

Case 2. exp(G) = 6.
Let W be an atom over supp(S) with k(W ) < 1. If |W | = 4, then |supp(W )| = 3 and

hence W must be of the form

W = g21g2g3

where g1, g2, g3 ∈ supp(S) are pairwise distinct. Since (g61)(g
6
2)(g

6
3) = W 3(g32g

3
3), we obtain

that |L(g61g
6
2g

6
3)| ≥ 2. It follows by g61g

6
2g

6
3 divides Sexp(G) that |L(Sexp(G))| ≥ 2.

If |W | = 5, then |supp(W )| = 3 or 4 and hence W must be one of the following forms.

i. W = g31g2g3 with g1, g2, g3 ∈ supp(S) are pairwise distinct.
ii. W = g21g

2
2g3 with g1, g2, g3 ∈ supp(S) are pairwise distinct.

iii. W = g21g2g3g4 with g1, g2, g3, g4 ∈ supp(S) are pairwise distinct.

Suppose (i) holds. Then 0 = 2σ(W ) = 6g1 +2g2 +2g3 = 2g2 +2g3. Since (g61)(g
6
2)(g

6
3) =

W 2(g22g
2
3)

2, we obtain that |L(g61g
6
2g

6
3)| ≥ 2. It follows by g61g

6
2g

6
3 divides Sexp(G) that

|L(Sexp(G))| ≥ 2.
Suppose (ii) holds. Then 0 = 3σ(W ) = 6g1 + 6g2 + 3g3 = 3g3. Thus ord(g3) = 2 and

hence k(W ) ≥ 1/2 + 4/6 > 1, a contradiction.
Suppose (iii) holds. Then 0 = 3σ(W ) = 6g1 + 3g3 + 3g3 + 3g4 = 3g2 + 3g3 + 3g4.

Therefore W0 = g32g
3
3g

3
4 is zero-sum. If W0 = g61g

6
2g

6
3g

6
4(W )−3 is not a minimal zero-sum

sequence, then |L(g61g
6
2g

6
3g

6
4)| ≥ 2 and hence |L(Sexp(G))| ≥ 2. If W0 is minimal zero-sum,

then g61g
6
2g

6
3g

6
4 = (g61)W

2
0 implies that |L(g61g

6
2g

6
3g

6
4)| ≥ 2 and hence |L(Sexp(G))| ≥ 2. �
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