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ON HALF-FACTORIALITY OF TRANSFER KRULL MONOIDS
WEIDONG GAO, CHAO LIU, SALVATORE TRINGALI, AND QINGHAI ZHONG

ABSTRACT. Let H be a transfer Krull monoid over a subset Gy of an abelian group G
with finite exponent. Then every non-unit a € H can be written as a finite product of
atoms, say a = uy - ... - ug. The set L(a) of all possible factorization lengths k is called
the set of lengths of a, and H is said to be half-factorial if |L(a)| = 1 for all a € H.

We show that, if a € H and |L(alGe®(@=3)/2])| = 1 then the smallest divisor-closed
submonoid of H containing a is half-factorial. In addition, we prove that, if G is finite
and ‘L(ngGo g?°rd@))| =1, then H is half-factorial.

1. INTRODUCTION

Let H be a monoid. If an element a € H has a factorization a = uy - ... - ug, where
k € N and uq,...,u; are atoms of H, then k is called a factorization length of a, and
the set L(a) of all possible k is referred to as the set of lengths of a. The monoid H is
said to be half-factorial (half-factorial) if |L(a)| = 1 for every a € H. Half-factoriality
has been a central topic in factorization theory since the early days of this field (e.g., see
[ ) Fy Yy Ty, L ])

Given a € H, let [a] = {b € H | b divides some power of a} be the smallest divisor-
closed submonoid of H containing a. Then [a] is half-factorial if and only if |L(a")| = 1
for all n € N, and H is half-factorial if and only if [¢] is half-factorial for every ¢ € H. It
is thus natural to ask:

Does there exist an integer N € N such that, if @ € H and |[L(a’V)| = 1, then
[a] is half-factorial 7 (Note that, if [a] is half-factorial for some a € H, then
of course |L(a*)| =1 for every k € N.)

We answer this question affirmatively for transfer Krull monoids over finite abelian groups,
and we study the smallest N having the above property (Theorems 1.1 and 1.2).

Transfer Krull monoids and transfer Krull domains are a recently introduced class of
monoids and domains including, among others, all commutative Krull domains and wide
classes of non-commutative Dedekind domains (see Section 2 and [¢] for a survey).

Let H be a transfer Krull monoid over a subset Gy of an abelian group GG. Then H is
half-factorial if and only if the monoid B(G)) of zero-sum sequences over Gy is half-factorial
(in this case, we also say that the set G is half-factorial). It is a standing conjecture that
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every abelian group has a half-factorial generating set, which implies that every abelian
group can be realized as the class group of a half-factorial Dedekind domain ([9]).

Suppose now that H is a commutative Krull monoid with class group GG and that every
class contains a prime divisor. It is a classic result that H is half-factorial if and only if
|G| < 2, and it turns out that, also for |G| > 3, half-factorial subsets (and minimal non-
half-factorial subsets) of the class group G play a crucial role in a variety of arithmetical
questions (see [10, Chapter 6.7], [11]). However, we are far away from a good understanding
of half-factorial sets in finite abelian groups (see [21] for a survey, and [17, 18, 22]). To
mention one open question, the maximal size of half-factorial subsets is unknown even for
finite cyclic groups ([18]). Our results open the door to a computational approach to the
study of half-factorial sets.

More in detail, denote by hf(H) the infimum of all N € N with the following property:

If a € H and |L(a?)| = 1, then [a] is half-factorial.

(Here, as usual, we assume inf ) = co.) We call hf(H) the half-factoriality index of H.
If H is not half-factorial, then hf(H) is the infimum of all N € N with the property that
IL(a™)| > 2 for every a € H such that [a] is not half-factorial.

Theorem 1.1. Let H be a transfer Krull monoid over a finite subset Go of an abelian
group G with finite exponent. The following are equivalent:

(a) H s half-factorial.

(b) hf(H) = 1.

(¢) Gy is half-factorial.

(d) [L(ITyeq, 99| = 1.

We observe that in general if H is half-factorial, then hf(H) = 1. But if H is a transfer
Krull monoid over a subset of a torsion free group, then hf(H) = 1 does not imply that
H is half-factorial (see Example 2.4.1). Furthermore, for every n € N, there exists a Krull
monoid H with finite class group such that hf(H) = n (see Example 2.4.2).

Theorem 1.2. Let H be a transfer Krull monoid over an abelian group G.
1. hf(H) < oo if and only if exp(G) < oc.
2. If exp(G) < oo and |G| > 3, then exp(G) < hf(H) < 3(exp(G) — 1).
3. If G is cyclic or exp(G) < 6, then hf(H) = exp(G).

We postpone the proofs of Theorems 1.1 and 1.2 to Section 3.

2. PRELIMINARIES

Our notation and terminology are consistent with [10]. Let N be the set of positive
integers, let Ng = NU {0}, and let Q be the set of rational numbers. For integers a,b € Z,
we denote by [a,b] = {x € Z | a < x < b} the discrete, finite interval between a and b.

Atomic monoids. By a monoid, we mean an associative semigroup with identity, and
if not stated otherwise we use multiplicative notation. Let H be a monoid with identity
1 =1y € H. An element a € H is said to be invertible (or a unit) if there exists an element
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a’ € H such that aa’ = a’a = 1. The set of invertible elements of H will be denoted by H*,
and we say that H is reduced if H* = {1}. The monoid H is said to be unit-cancellative
if for any two elements a,u € H, each of the equations au = a or ua = a implies that
u € H*. Clearly, every cancellative monoid is unit-cancellative.

Suppose that H is unit-cancellative. An element u € H is said to be irreducible (or an
atom) if u ¢ H* and for any two elements a,b € H, u = ab implies that « € H* or b € H*.
Let A(H) denote the set of atoms of H. We say that H is atomic if every non-unit is a
finite product of atoms. If H satisfies the ascending chain condition on principal left ideals
and on principal right ideals, then H is atomic ([7, Theorem 2.6]). If « € H \ H* and
a = uy...ug, where k € N and uq,...,ux € A(H), then k is a factorization length of a,
and

Ly(a) = L(a) = {k € N | k is a factorization length of a}
denotes the set of lengths of a. It is convenient to set L(a) = {0} for all a € H*.

A transfer Krull mononid is a monoid H having a weak transfer homomorphism (in
the sense of [2, Definition 2.1]) 6: H — B(Gy), where B(Gy) is the monoid of zero-sum
sequences over a subset Gy of an abelian group G. If H is a commutative Krull monoid
with class group G and Gy C G is the set of classes containing prime divisors, then there
is a weak transfer homomorphism 6: H — B(Gj). Beyond that, there are wide classes of
non-commutative Dedekind domains having a weak transfer homomorphism to a monoid of
zero-sum sequences ([25, Theorem 1.1], [24, Theorem 4.4]). We refer to [3, 13] for surveys
on transfer Krull monoids. If 0: H — B(Gy) is a weak transfer homomorphism, then sets of
lengths in H and in B(G)) coincide ([2, Lemma 2.7]) and thus the statements of Theorems
1.1 and 1.2 can be proved in the setting of monoids of zero-sum sequences.

Monoids of zero-sum sequences. Let GG be an abelian group and let Go C G be
a non-empty subset. Then (Gg) denotes the subgroup generated by Gy. In Additive
Combinatorics, a sequence (over (Gp) means a finite unordered sequence of terms from G
where repetition is allowed, and (as usual) we consider sequences as elements of the free
abelian monoid with basis Gy. Let

S=g1... g = H 9" € F(Gy)
9€Go
be a sequence over Gy. We call
supp(S) = {g € G | v4(S) > 0} C G the support of S,
|S| =4 = ng(S) € Ny the length of S,

geG

¢
o(S) = Zgi the sum of S,
i=1
and  X(S) = {ZgZ |0#1C [1,€]} the set of subsequence sums of S.
iel

The sequence S is said to be
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o zero-sum free if 0 ¢ 3(S),

e a zero-sum sequence if o(S) =0,

e a minimal zero-sum sequence if it is a nontrivial zero-sum sequence and every proper
subsequence is zero-sum free.

The set of zero-sum sequences B(Gy) = {S € F(Gy) | o(S) =0} C F(Gy) is a submonoid,
and the set of minimal zero-sum sequences is the set of atoms of B(G)). For any arithmetical
invariant x(H) defined for a monoid H, we write *(Gy) instead of *(B(Gy)). In particular,

A(Gy) = A(B(G)p)) is the set of atoms of B(Gy) and hf(Gy) = hf(B(Gy)).

Let G be an abelian group. We denote by exp(G) the exponent of G which is the least
common multiple of the orders of all elements of G. Let » € N and let (eq,...,e,) be
an r-tuple of elements of G. Then (eq,...,e,) is said to be independent if e; # 0 for all
i € [1,r] and if for all (my,...,m,) € Z" an equation mye; + ...+ m,e, = 0 implies that
m;e; = 0 for all ¢ € [1,7]. Suppose G is finite. The r-tuple (ey,...,e,) is said to be a basis
of G if it is independent and G = (e;) & ... P (e,). For every n € N, we denote by C,, an
additive cyclic group of order n. Since G = C,,, @...® C,,, r = r(G) is the rank of G and
n, = exp(G) is the exponent of G.

Let Gy C G be a non-empty subset. For a sequence S =gy ... g, € F(Gy), we call

1
k(S) = ; ord(7) € Q>o the cross number of S, and

K(Gy) = max{k(S) | S € A(Gy)} the cross number of G.

For the relevance of cross numbers in the theory of non-unique factorizations, see [18, 20, 23]
and [10, Chapter 6].
The set Gy is called
half-factorial if the monoid B(Gy) is half-factorial;
non-half-factorial if the monoid B(Gy) is not half-factorial;
o minimal non-half-factorial if Gy is not half-factorial but all its proper subsets are;
e an LCN-set if k(A) > 1 for all atoms A € A(Gy).
The following simple result ([10, Proposition 6.7.3]) will be used throughout the paper
without further mention.

Lemma 2.1. Let G be a finite abelian group and Go C G a subset. Then the following
statements are equivalent:

(a) Gy is half-factorial.
(b) k(U) =1 for every U € A(G)).
(c) L(B) = {k(B)} for every B € B(Gy).

Lemma 2.2. Let G be a finite group, let Gy C G be a subset, let S be a zero-sum sequence
over Gy, and let A be a minimal zero-sum sequence over Gy.

1. Ifk(A) # 1, then |L(A®P(@)| > 2.
2. If there exists a zero-sum subsequence T of S such that |L(T)| > 2, then |L(S)| > 2.
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3. Ifk(A) < 1 and k(A) is minimal over all minimal zero-sum sequences over Gy, then

'L <AF3;°EEXH)

Proof. 1. Suppose k(A) # 1 and let A =g;-...-gp, where £ € Nand ¢;,...,9, € Go. Then

> 2, forall g €supp(A).

xp(G xp(G
Aexp(G) _ (g(l)rd(gl))srf((gl)) . (g;rd(gz))srﬁ((gz))’

which implies that

{exp<a>, 3 o) } — {exp(@). exp(G)K(A)} € L(A™)

i1 ord(g;)
It follows by k(A) # 1 that [L(A®P@)| > 2.

2. Suppose T is a zero-sum subsequence of S with |L(T")| > 2. It follows by L(S) D
L(T) + L(ST™!) that |[L(S)| > |L(T)| > 2.

3. Suppose k(A) < 1 and k(A) is minimal over all minimal zero-sum sequences over Gy.

Let g € supp(A). Then there exist s € N and minimal zero-sum sequences Wy, ..., Wy
such that
vl d
Al = gord@) gy T

Since

’ (Aﬁrféfﬂ) _ {%fm K(A) = 1+ 3 k(Wi) > (1+ s)k(A).

L(Msg}ggﬂ)‘ > 9. 0

For commutative and finitely generated monoids, we have the following result.

we have [%&;’N # s + 1 and hence

Proposition 2.3. Let H be a commutative unit-cancellative monoid. If Hyeq 1s finitely
generated, then hf(H) is finite.

Proof. We may assume that H is reduced and not half-factorial. Suppose H is finitely
generated and suppose A(H) = {u1,...,u,}, where n € N. Set Ay = {[[,c,ui |0 # 1 C
[1,n]}. Then Ay is finite and hence there exists M € N such that |L(a}!)| > 2 for all
agp € Ag with Jao] not half-factorial. Let a € H \ H* such that [a] is not half-factorial.

It suffices to show that |L(a™)| > 2. Suppose a = uf' - ... - uk» where ki,..., k, € Ny.
Set Iy = {i € [1,n] | k; > 1} and ap = [[;c; u;- Then ag divides a and [ag] = [a] is not
half-factorial, whence |L(a}!)| > 2 and |L(a™)| > 2. O

If Gy is a finite subset of an abelian group, then B(G)) is finitely generated ([0, Theorem
3.4.2]) and thus hf(Gy) < co. We refer to [0, Sections 3.2 and 3.3] and [12] for semigroups
of ideals and semigroups of modules that are finitely generated unit-cancellative but not
necessarily cancellative.

Examples 2.4. The following examples will help up to illustrate some important points.
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1. Let (e, e2) be a basis of Z? and let Gy = {e1, —e1, €2, —€a, €1 + €3, —e; — e5}. Then
A(Go) = {61(—61), 62(—62), (61 + 62)(—61 — 62), 6162(—61 — 62), (—61)(—62)(61 + 62)}.
Since 61(—61) . 62(—62) . (61 + 62)(—61 — 62) = 6162(—61 — 62) . (—61)(—62)(61 + 62), we
obtain G is not half-factorial. Furthermore, we have GGy is half-factorial for every
nonempty proper subset G; € Gy. Let A € B(Gy). If supp(A) = Gy, then |[L(A)| > 2
and [A] = B(Gy) is not half-factorial. If supp(A) C Gy, then [A] = B(supp(A4)) is
half-factorial and |L(A)| = 1. Therefore hf(Gy) = 1.

2. Let G be a cyclic group with order n and let g € G with ord(g) = n, where n € N3.
Set Go = {g, —g}. Then Gy is not half-factorial. Let Ay = g(—g). Then [Aq] is not
half-factorial and |L(A7~")| = 1, whence hf(Gg) > n. Let A € B(Gy) with [A] is not
half-factorial. Then supp(A4) = Gy and Ay divides A, whence |L(A™)| > 2. Therefore
hf(Go) = n. Let G = C% and let (e, es) be a basis of G. Set G = {e1, ea,e1 + €}
Then G, is not half-factorial. Let A; = ejea(e; +eg). Then [A;] is not half-factorial
and |L(A;)| = 1, whence hf(G;) > 2. Let A € B(G,) with [A] is not half-factorial.
Then supp(A) = G; and A; divides A, whence |L(A?)| > 2. Therefore hf(G;) = 2.

3. Let H be a bifurcus moniod (i.e. 2 € L(a) for all a € H \ (H* U A(H))). For
examples, see [I, Examples 2.1 and 2.2]. Since for every a € H \ H*, we have
{2,3} C L(a®), it follows that hf(H) < 3 and hf(H) is the minimal integer ¢ € N
such that |L(a’)| > 2 for all @ € H \ H*. Therefore hf(H) = 3 if and only if there
exists ag € A(H) such that L(a2) = {2}.

4. Let H C F = F* X [p1,...,ps] be a non-half factorial finitely primary monoid of
rank s and exponent « (see [10, Definition 2.9.1]). For every a = ep!' ...pls € F,

we define |a| = t; + ... + 5, where t1,...,t; € Ngand e € F*. Let a € H\ H*.

Since H is primary, we have H = [a] is not half-factorial. Thus hf(H) is the

minimal integer ¢t € N such that |[L(a')| > 2 for all « € H\ H*. Suppose ay € H

with |ag| = min{|a|: a € H\ H*}. Then ay € A(H) and L(a2) = {2}, whence

hf(H) > 3.

If H\ H* = (p1...ps)*F and s > 2, then H is bifurcus and hence hf(H) = 3.
Suppose s = 1 and H \ H* = (p,)°F. Let b = ep’ € H. Then p** divides b*. It
follows by p*® = (p*)3 = p*T1p?@~1! that |L(b?)| > 2, whence hf(H) < 4. If 33 > 4aq,
then p** divides b* and hence |L(b®)| > 2. If 38 < 4o — 2, then b is an atom and
b = Sp2alp-(2a=b) whence |L(b%)| > 2. If 38 = 4a — 1, then L(b%) = {3}. Put
all together, if @ = 1 mod 3, then hf(H) = 4. Otherwise hf(H) = 3.

3. PROOF OF MAIN THEOREM

Proposition 3.1. Let Gy C G be a non half-factorial subset and let S be a zero-sum
sequence over Gy with supp(S) = Gj.

1. If Gy is an LON-set, then |L(T] e, 9”9 > 2.
2. If |Go| = 2, then [L(T,eq, 9°*9)| > 2.

3. If Gy is a minimal non half-factorial subset, then \L(SeXp )
|

> 2
4. If {g € Go | ord(g)/vy(S) = exp(G)}| < 1, then [L(S*D)| > 2.

|
>
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Proof. 1. Suppose Gq is an LCN-set. Since G is not half-factorial, there exists a minimal
zero-sum sequence 1" over Gy such that k(7)) > 1. Note that T is a subsequence of
[yeq, ¢°4@_ Then there exits Wy,...,W; € A(G)) such that

Hgord(g):T.Wl-...'VVl-

9€Go
Thus k([ ],eq, g9y = |Gyl = k(T) + 22:1 k(W;) > 1 + 1. The assertion follows by
{IGol, 1+ 1} € LT T e, 9749)-

2. Suppose |Gy| = 2 and let Gy = {g1,92}. If Gy is an LCN-set, the assertion follows
by 1.. Suppose there exists a minimal zero-sum sequence T over G with k(7T) < 1. Let
Ty = g% - g% be the minimal zero-sum sequence over Gy such that k(7},) is minimal. If
min{%ﬁgl), M} < 2, say M < 2 then

A
T2 = gy @) W, where W is non-empty zero-sum sequence .

Thus k(W) = 2k(T0) — 1 < k(Tp), a contradiction to the minimality of k(7j). Therefore
mm{ord o) Ord ordl92)} ~ 9 and hence

g‘frd(gl) - gordlen) — T2 -V where V is non-empty zero-sum sequence .

It follows that |L(g{™ @) . g57492))| > 2,

3. Suppose that G is a minimal non-half-factorial set. If S has a minimal zero-sum
subsequence A with k(A) # 1, then the assertion follows by Lemma 2.2. If Gy is an
LCN-set, then the assertion follows from 1. and Lemma 2.2.2. Therefore we can suppose
L(S) = {k(S)} and suppose there exists a minimal zero-sum sequence 7' over G, with
k(T) < 1.

Let Ty = H'ZGT g% be the minimal zero-sum sequence over G such that k(7}) is minimal.
The minimality of Gy implies that [; > 1 for all ¢ € [1, |Gyl|]. After renumbering if necessary,

we let
20— in( N e 11, 6ol
By Lemma 2.2.3, ‘L (T Oﬁrdflgl)W) ‘ > 2. If T, O[Ordl(lglw divides S®P(@) the assertion follows by
] ot
Lemma 2.2.2. Suppose T t Sexp(@) | Let
ord(g1)

r=gie il |
Thus for each i € I, we have

20rd(gi) > I [%W I [%ﬁgﬂ > exp(G)v,. (S) > exp(G)

which implies that ord(g;) = exp(G), v, (S) = 1, and [Ord gl)—‘ > Or%ggi) = ex‘;fG).

7 —‘ li > exp(G)vy,(9)}.

v
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Let ig € I such that l;, = max{l; | i € I'}. Therefore for every j € [1,|Go|] \ I, we have

exp(G)vy, (S) _ exp(G)vy, (S)
' ’VOrd(gl)-‘ = exp(G) = LigVg, () -

I lig

Note that for every i € I, we have l; < l;; = lijvy,(S). It follows by vy, (To) = l;y =
liovgio (S> = Vgio (Sli()) that

Slio =Ty - W, where W is a zero-sum sequence over Gg \ {gi,} -

By the minimality of G, we have Gy \ {g;, } is half-factorial which implies that k(W) € N.
Therefore k(Ty) = 1;,k(S) — k(W) is an integer, a contradiction to k(7p) < 1.

4. Let Gh = {g € Gy | ord(g) = exp(G)vy(S)}. Suppose Gy \ G; is not half-factorial. If
Go \ Gy is an LCN-set, then the assertion follows by Proposition 3.1.1 and Lemma 2.2.2.
Otherwise there exits a minimal zero-sum sequence A over Gy \ G; such that k(A4) < 1.
We may assume that k(A) is minimal over all minimal zero-sum sequences over Gq \ G

and that min{ ‘\’j%) | g € supp(4)} = ‘\’;i((‘f‘))) for some gq € supp(A) C Gy \ G1. Thus by

ord(gg)

Lemma 2.2.3, we have |L (A[VHO(AJ) | > 2. The definition of G; implies that

Eﬂfiﬁgillw

A [ vo0 (4) divides ~ S=P()

and hence the assertion follows.

Suppose Gg \ G is half-factorial. Then G; is non-empty and hence G; = {go} for some
go € Go. If Gy is an LCN-set, then the assertion follows by Proposition 3.1.1 and Lemma
2.2.2. Otherwise there exits a minimal zero-sum sequence A over Gy such that k(A) < 1.

We may assume that k(A) is minimal over all minimal zero-sum sequences over Gy and
that min{%%) | g € supp(4)} = (Zd—(&)) for some ¢g; € supp(A) C Gy. Thus by Lemma
1

ord(g1)

2.2.3, we have |L <A[Vg1<A>W) | > 2. For every g € Gy \ G, we obtain

vy(A) [va((iﬂ < vy(A) [‘Z‘E%ﬂ < 20rd(g) < exp(G)vy(S) .

1£ vy, (4) | S48 | < ord(g0) = exp(G), then

vy, (A)

0rd(91)"

A divides g0

and hence |L(S™P(@)| > 2.
Otherwise for every g € G \ Gy, we have
0(0) _ [ondg)]  [alg)) . [ep(Onu(s)] ¢ 0luls
Voo (4) Vo (A) | 7 [ ve(4) |~ 2v4(A) B ve(4) ‘
Therefore v,(A) < vy (A)v,(S) for all g € Gy \ Gy which implies that A divides SYso(4).
Thus there exits a zero-sum sequence W over Gg \ G such that Sveo(d) = A . W. Since
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Gy \ G is half-factorial, we obtain k(A) = vy, (A)k(S) — k(W) is an integer, a contradiction
to k(A) < 1. O

Proof of Theorem 1.1. By the definition of transfer Krull monoid, it suffices to prove the
assertions for H = B(Gj) and hence H is half-factorial if and only if Gy is half-factorial. If
G is half-factorial, it is easy to see that hf(Gy) = 1 and ‘L(ngGo g?°rd@)) | = 1. Therefore
we only need to show that (b) implies (c) and that (d) implies (c).

(b) = (c) Suppose hf(Gy) = 1 and assume to the contrary that Gy is not half-factorial.
Then there exists A € A(Gy) such that k(A) # 1, whence supp(A) is not half-factorial.
Therefore hf(supp(A)) > 2, a contradiction.

(d) = (c) Suppose [L(]],cq, g%°"49)| = 1 and assume to the contrary that Gy is not half-

factorial. If Gy is an LCN set, then Proposition 3.1.1 implies that [L([T,cq, 9™%)| > 2, a

contradiction. Thus there exists an atom A € A(Gp) with k(A) < 1 and we may assume
that k(A) is minimal over all atoms of B(Gy). Let go € supp(A). Then by Lemma 2.2.3,

L (Ahrgi(ﬁm) > 2, a contradiction to A[%&gf‘(‘)” | T1 2ord(g) O
= 4, gEGog '

Proof of Theorem 1.2. By the definition of transfer Krull monoid, it sufficient to prove all

assertions for H = B(G).

1. Suppose exp(G) < co. If |G| > 3, then 2. implies that hf(G) < co. If |G| < 2, then
B(G) is half-factorial and hence hf(G) = 1.

Suppose exp(G) = oo. If there exists an element g € G with ord(g) = oo, then A, =
((n+1)g)(—ng)(—g) is an atom for every n € N. Since {(n + 1)g, —ng, —¢g} is not half-
factorial and |L(A”)| = 1 for every n > 2, we obtain that hf(G) > n for every n > 2, that
is, hf(G) = oo. Otherwise G is torsion. Then there exists a sequence (g;)32, with ¢; € G
and lim; . ord(g;) = oco. It follows by 1. that hf(G) > hf({g;)) > ord(g;) for all i € N,
that is, hf(G) = oc.

2. If G is an elementary 2-group and e, es are two independent elements, then {e;, s, 1+
ea} is not a half-factorial set and |L(ejez(e; + e2))| = 1 which implies that hf(G) > 2 =
exp(G). Otherwise there exists an element g € G with ord(g) = exp(G) > 3. Since {g, —¢g}

is not half-factorial and |L(g°"49)~1(—g)rd9)=1)| = 1, we obtain hf(G) > ord(g) = exp(G).
Let S be a zero-sum sequence over G such that supp(.S) is not half-factorial. In order to

prove hf(G) < L%J, we show that

we have

3exp(G)—3

L= =) > 2,
Set Gy = supp(.5). If G is an LCN-set, the assertion follows by Proposition 3.1.1. Suppose
there exists an atom A € A(Gy) with k(A) < 1. Let Ay € A(supp(S)) be such that k(Ap)

is minimal over all minimal zero-sum sequences over Gy and set Ay = g? Ca gi}‘, where
y,li,...l, € N and g1,...,9, € supp(S) are pairwise distinct elements. If there exists

J € [1,y] such that 2[; > ord(g;), then g;rd(gi) divides A2 and hence A2 = g;.)rd(gj) W
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for some non-empty sequence W € B(supp(S)). Thus k(W) = 2k(Ay) — 1 < k(4p), a
contradiction to the minimality of k(Ag). Therefore

2l; < ord(g;) — 1 for all i € [1,y].

After renumbering if necessary, we assume %&gl) = min{ %ﬁg") | i€ [l,y]}. Then
L [ordl(gl)-‘ <1 [ord(gi)-‘ < liord(gi)l—l— ;i —1 < ord(gi)+ord(g2i) — 1_1 < 3exp(2G) -3 |
1 i i

T 1 |se(@)=3 | .
which implies A4; ' ' divides S 2 . The assertion follows by Lemma 2.2.3.

3(a). Suppose that G is cyclic and that g € G with ord(g) = |G| > 3. We will show that
hf(G) = exp(G).

Let S be a zero-sum sequence over GG such that supp(G) is not half-factorial. It suffices
to show |L(S®P@)| > 2. If |{g € supp(S) | ord(g) = |G|v,(S)}| < 1, then the assertion
follows from Proposition 3.1.4. Suppose |[{g € supp(S) | ord(g) = |G|v,(S)}| > 2. Then
there exist distinct g1, g2 € supp(S) such that ord(g;) = ord(ge) = |G|. We may assume
that g1 = kgy for some k € N>y with ged(k, |G]) = 1. It follows by k(g‘1G|_k cg2) < 1
that Go = {g1,92} = {91, kg1} is not half-factorial. By Proposition 3.1.2, we obtain that
L(Se@)| > 2

3(b). Suppose G is a finite abelian group with exp(G) < 6. We need to prove that
hf(G) = exp(G). Let S be a zero-sum sequence over G such that supp(G) is not half-
factorial. It suffices to show |L(SPE))| > 2.

If supp(S) is an LCN-set, the assertion follows by Proposition 3.1.1. Thus there is a
minimal zero-sum sequence W over supp(.S) such that

k(W) < 1.
By Proposition 3.1.2 and Lemma 2.2.2, we have
|supp(W)| > 3.

Suppose W | S. Since k(W) < 1, it follows by Lemma 2.2 that |L(W*P(&))| > 2 and hence
IL(SP(@))| > 2. Therefore we may assume that W { S, whence |W| > |supp(W)| +1 > 4.
It follows that 6 > exp(G) > % > |W| > 4.

We distinguish two cases according to exp(G) € {5,6}.

Case 1. exp(G) = 5.

Then, G = Cf and for all W € A(supp(S)) with k(W) < 1, we have that

WS, |supp(W)| =3, and |[W|=4.
Let Wy be an atom over supp(S) with k(W) < 1. Then Wy and S must be of the forms

Wo = 619293, S =Tg19293

where g1, g2, g3 € supp(.S) are pairwise distinct and 7" € F(supp(S)\ {g1}) with o(T") = ¢;.
We may assume T is zero-sum free. Otherwise T" = ToT" with Tj is zero-sum and 71"
is zero-sum free and we can replace S by T"g, 293, since |L((1"g19293)°)| > 2 implies that
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IL(S®)| > 2. Therefore S is a product of at most three atoms and every term of S has
order 5.

Assume to the contrary that |L(S°)| = 1, ie., L(S®°) = {|T] + 3}. Since g¢ig3g5 =
W& (g19593) is a zero-sum subsequence of S°, we obtain that g;g5g3 is an atom. Note that

(929293)*S = (91T)(g19593) is a zero-sum subsequence of S°.

Suppose S is an atom. Then L(g{T) = {2} and hence |g{T| > 2 x4 =38, ie., |T| > 4. It
follows by {5} = L(S%) = {|T'| + 3} that |T| = 2, a contradiction.

Suppose S is a product of two atoms. Then L(g{T) = {3} and hence |¢{T| > 3 x4 = 12,
ie., |T| > 8. It follows by {10} = L(S®) = {|T| + 3} that |T| = 7, a contradiction.

Suppose S is a product of three atoms. Then L(g{T) = {4} which implies that 7" =
T T>T5T, such that ¢T; is zero-sum for all ¢ € [1,4]. Since ¢17;|S, we obtain k(¢;T;) > 1
and hence [g,T;] > 5. Therefore [giT| > 4 x 5 = 20, i.e., |T| > 16. It follows by
{15} = L(S®) = {|T| + 3} that |T| = 12, a contradiction.

Case 2. exp(G) = 6.

Let W be an atom over supp(S) with k(W) < 1. If |W| = 4, then |supp(W)| = 3 and
hence W must be of the form

W = g7 9293

where g1, ga, g3 € supp(S) are pairwise distinct. Since (¢9)(¢5)(gS) = W3(g3g3), we obtain
that |L(g%¢5¢S)| > 2. Tt follows by ¢SgS¢S divides S™P(E) that |L(S<PE))| > 2.

If |W] =5, then |supp(W)| = 3 or 4 and hence W must be one of the following forms.

i. W = g3gag3 with g1, g2, g3 € supp(S) are pairwise distinct.
ii. W = gig3gs with g1, go, g3 € supp(S) are pairwise distinct.
iii. W = g2g29394 With g1, go, g3, g4 € supp(S) are pairwise distinct.

Suppose (i) holds. Then 0 = 20(W) = 6g; + 292 + 293 = 292 + 2g3. Since (¢9)(¢5)(gS) =
W2(g2g%)%, we obtain that |L(g%¢SgS)| > 2. Tt follows by ¢%¢SgS divides SP(@) that
L) > o,

Suppose (ii) holds. Then 0 = 30(W) = 6g1 + 692 + 393 = 3g3. Thus ord(gs) = 2 and
hence k(W) > 1/2+44/6 > 1, a contradiction.

Suppose (iii) holds. Then 0 = 30(W) = 6¢g1 + 393 + 395 + 394 = 392 + 393 + 39a.
Therefore Wy = g3g3g3 is zero-sum. If Wy = ¢%¢8¢S¢$(W)~3 is not a minimal zero-sum
sequence, then |L(¢%¢5¢5¢S)| > 2 and hence |L(S®P(@))| > 2. If W, is minimal zero-sum,

then ¢%¢595g$ = (¢9)W¢ implies that |L(g%¢59S¢$)| > 2 and hence |L(S®P(@)] > 2. O
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